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ABSTRACT

Most of the published theoretical and calculational effort on unsupported, ordered, ultra-
thin films {“UTF") in vacuo has focused on the thickest computationally feasible systems as
models for surface properties of semi-infinite slabs. Crystalline periodic length scales in two
cartesian dimensions combined with molecular-scale thickness in the third, however, make UTF's
strong candidates for the occurrence of quantum interference effects. Many UTF properties were
predicted first from jellium slab models. A noteworthy prediction was that there would be
large oscillations in the work function as a function of layer number. Extensive calculations on
a variety of N-layers (N = 1,2,3... atomic planes) using all-eizctron, full-potential, local-spin-
density approximation techniques show that the work function oscillation is weaker than expected
but that there are significant layer—-number dependences in the equilibrium lattice parameters,
inter-planar spacings, electronic struciure, density of states, and electronic stopping power.
This paper reviews our own calculations as well as some others. Our objectives include the
discernment of systematics within UTF’s, systematics in relationship to their counterpart crystals,
relationship with surface properies, and appraisal of challenges to current models and methods.



1. Motivation and Objeciives

Modelling the surface of a semi-infinite crystal by a slab which is translationally periodic
parallel to its faces has been a commonplace for many years. One of the comptational resources
challenges for such studies is the problem of “the thicker the better.”” Enough layers must be
included to reduce both surface-surface interactions and interior relaxations (relative to the infinite
crystal) to ne_ligibility. Both supercell (periodic replication of the slab) and free slab (vacuum
boundary conditions) calculations are done.

Viewed from a different perspective, the free slabs motivate a distinct (though not entirely
separate) set of questions, even though the formal techniques and implementing algorithms
for treating the free slabs are indistinguishable in the two cases. The alternative perspective
arises from recognition of the technological rush to reduce micro-electronic feature size. For
layered systems that trend means inexorable reductions in thickness. In contrast to modelling of
semi-infinite slabs, the technological asymptote cof the world of micro-electronics is “the thinner
the better.” A slab which is thin on the scale of several molecular bond lengths yet retains
crystalline periodicity and length scales parallel to its faces, is, however, a strong candidate for
the occurrence of quantum interference effects. In addition to their intrinsic interest, such static
quantumn size effects could have profound implications (desirable or undesirable) for whatever
technological objectives dictated thinness in the first place.

Ultra-thin films (UTF’s) also are of interest because they are mesoscopic structures which
correspond to the ordered system limit analogous with separated atoms (the ‘“delamination limit™).
By construction such systems have little in the way of an interior, hence their structure and
properties may be different from the surface properties induced in a cleaved crystal. Some of
those properties, notably UTF response to charged particle irradiation and to overlayer deposition,
are matters of intense practical interest as regards the development of advanced micro-electronic
fabrication techniques.

Unsupported UTF's are not yet an experimental reality. That being the case, the value
of chemically specific first principles calculational studies is to predict trends and relationships
amongst systems not yet made but right over the experimental horizon and to relate those trends
to known systems, e.g. bulk crystals and their surfaces.

The significance of chemical specificity is illustrated by the original prediction of a UTF
static quantum size effect (SQSE). Nearly two decades agc Schulte! showed that the jellium
model UTF produced oscillations in the work function as a function of thickness of order 0.5
- 1.0 eV (see Fig. 8 of Ref. ). Elaboration followed? with an important point being that
geometric relaxation might reduce but not suppress the effect. In the interim a set of systematic
tre tments of thickness dependencies in Al fcc (111) UTF's*4 showed clearly that SQSE’s could
be found in a system with realistic electrons, nuclei, and periodicities. (Only much later was an
alkali metal sequence of UTF's studied; we return to this point below.)

It was also found, however, that growth on a supposedly inert substratc would suppress
the effect.*® That calculation illustrated, however, the essential need for reliable prediction of
trends in the behavior of both unsupported UTF’s and heterogeneous layered assemblies of them.
SQSE’s are, moreover, but onc aspect of the more general question of systematic dependencics



of system properties upon the number of atomic layers. Such dependencies, beginning with
structural parameters themselves, are affected strongly by system chemistry.

2. Effect of Objectives on Methodology

As presented in the original papers,>® we use Density Functional Theory’ and solve the
Kohn-Sham equations in a basis of gaussian orbitals. To accelerate the calculation, four-center
integrals are eliminated by use of an auxiliary basis of gaussians to expand the density, with the
expaiisior. coefficients determined by minimization of the Coulomb energy error resulting from
the fit. The energy densities which depend non-linearly on the electron density that are ubiquitous
in DFT also are expanded in an auxiliary gaussian basis with the coefficients determined by least
squares on a numerical integration sampling grid. Taken together one gets a contribution to the
alphabet soup of methodological nomenclature: our method is LCGTO-FF (Linear Combination
of Gaussian Type Orbitals with Fitting Functions).

The focus on prediction of trends in UTF structures and properties and their relationship
to bulk crystals and cleaved surfaces has multiple effects on the choice of methodology. First,
we choose DFT because it is the overwhciming favorite for first principles study of solids and
their cleaved surfaces. (Until recently this choice meant that there were relatively few molecular
calculations with which to compare but the recent burst of interest in DF1 in the quantum
chemistry community is changing that.)

Second, we do not use relativistic corrections. The systems considered are all relatively
light. In addition, there is a real problem of understanding the behavior of such corrections in
the context of approximations made to implement DFT (see discussion of Table I) as well as the
more fundamental question of what it means to combine the Dirac and HKS Hamiltonians.

Third, we still use the local (spin) density approximation [L(S)DA] not the generalized gra-
dient approximations (GGA) which have been a focus of much attention in the DFT cominunity
for the last few years. In essence the issue is "mas vale lo malo conocido que lo bueno por
conocer” (“better the known evil than the as yet unknown good™). GGA's are fascinating from
tne perspective of developing DFT to its full potential but they are not yet “ready for prime
time” in regards to materials physics.

To support this critique, consider the task of predicting the ground state of crystalline Al.
Table I summarizes all the modern LDA and GGA calculations. One set, by Juan and Kaxiras
(ref. “h” in the Table), is sufficiently anomalous as to lattice constant and binding energy that
we drop it from consideration. Several observations can be made. For the NON-relativistic
calculations, reasonable LDA’s do not give shortened bonds in spite of overbinding. This
behavior is distinct from findings in molecules. Also notice that the very simplest LDA, KSG
(i.e. Xcv with «v=2/3), does not overbind. contrary to its behavior in molecules. For the LDA,
the relativistic calculations all clump at ac = 7.52 - 7.54 au while all the non-relativistic ones
clump at 7.58 - 7.60 (except for the KSG LDA which gives a consistent, larger value). Similarly
the nonrelatvistic B's are all < 80 GPA, while the relativistic values are all > 82 GPa. The
choice of LLDA docs not seem to affect the behavior of the relativistic calculations: bonds ave
short and K. is too negative (but no more so than the non-relativistic calculations). Turning to
the GGA, therc is no clear pattern to k., the few reports do show remarkable disparity. The



PW91 GGA seems tc be less sensitive to the relativistic bond shortening than the LDA if one

compares the Garcia et al.,

Juan et al.,

and Dufek et al. calculations. The Khein et al. PW9|

Reference Relativity; LDA  -E. (eV/atom) 2. (a.u.) B (GPa)

or GGA;

pseudopotential?
Expt (a.b,c) 3.37 7.60 72.7
B&T(d) NR; HL; no 4.07 7.60 79.7
L & C (e) NR:Wigner:; yes 3.65 7.58 71.5
M J &W(H) NR; HL; no 3.88 7.60 80
B&T(g) NR; KSG: no 3.20 7.65 96.8
J& K (h) NR;: PZ; yes 4.14 7.43 87.65
K,S&U( FR/SR; PW; no 4.16 7.52 83.9
D, B, &S (j) SR; HL; no — 7.54 84
Setal (k) SR; HL; no 4.01 7.54 822
G.etal. (1) SR; PZ; yes 4.05 7.48 87
J&K (h) NR; PW9l; yes 3.22 8.03 61.1
JLK, & G (m) NR; PW9I; yes 3.45 7.62 79.3
D,B, & S (j) SR; EV; no — 7.91 55
D, B, &S (j) SR; PW9I,; no — 7.65 74
K, S, & U (i) FR/SR: PW91; 3.74 71.74 72.6

no
G. et al. (1) SR: BP; yes 3.23 7.65 77
G.etal (D) SR; PW91?; yes 3.09 7.63 79

Table 1 Calculated results for the Crystalline Al Ground State (fcc). The column “Relativity” indicates wiether the calculation
was non-rclativistic (NR), scalar-relativistic (SR) or fully relaiivistic (FR); a slash separates core from valence. The various
exchange-comrelation models are HL. = Hedin-Lundqvist. KSG = Kohn-Sham-Gaspar (X n=2/3), Wigner = KSG plus Wigner

= Perdew-Wang (1991 version), BP= Becke-Perdew, EV= Engel-Vosko.
GGA's are below the double line E, is the static lattice cohesive energy, a. the equilibrium lattice constant, and B the bulk
modulus. Notes: (a) Lattice constant extrapolated to T = 0 according to Ref. (¢) below; (b) Bulk modulus according lo Rel. 9;
(c) E for static lattice per ref. (g) below; (d) Ref. B; (e) P.K. Lam and M.L. Cohen, Phys. Rev. B 24,4224 (1981). (D V..
Moruzzi, ).F. Janak. and A.R. Williams Calculated Electronic Properties of Metals (Pergamon, NY, 1978): {g) J.C. Boeuger
and S.B. Trickey, Phys. Rev. B 29. 6434, (1984); (h) Y-M Juan and [' Kaxiras, Phys. Rev. B 48, 14944 (1994): (i) A Khein,
D.). Singh. and C.J. Umrigar, Phyﬁ Rev. B 31, 4105 (1995); (j) P. Dufek, P. Blaha, and K. Schwarz. Phys. Rev. B 50, 7279
(1994); (k) M. Sluiter. G. De Fontaine, X. Q Giuo, R. Podloucky, and A.J. Freeman. Phys. Rev. B 42, 10460 (1990); ) A.
Garcia, C Elsdsser, J. Zhu, §.G. Lovic. and M.L. Cohen, Phys. Rev. B 46, 9829 (1992): 47 415((E) (1993) {This
may be a PWEB6 calculation]: (m) Y-M. Juan, E. Kaxiras, and R.Ci. Gordon. Phys. Fev. B 31,9521 (1995)

correlation formula, PZ = Perdew-Zunger, PW9I



calculation differs by being dramatically longer in bond than the presumably equivalent FLAPW
calculation of Dufek et al.. The difference may be in the way the FLAPW sphere boundary
discontinuity in the GGA potential was treated or in the use of fully relativistic cores by Khein
et al. Ostensibly the same GGA, PW91, gives a slightly shorter bond in the non-relativistic,
pseudo-potential calculation (including core-valence corrections) of Juan, Kaxiras, and Gordon,
but 0.3 eV/atom less binding and a nearly 10% higher value of B.

What is curious about this table from the point of view predicting materials systems trends
is that the GGA'’s are no better at predicting bond lengths than the LDA and, if anything, are
worse at bulk moduli. What's more, our recent LDA calculation of the Al phase transitions®
agrees quite well with the most recent experimental data to above 200 GPa.® Because of the
range of disparate results for the same GGA, one suspects that technical and implementation
subtleties are involved. Rather than risk suggesting trends to experimenters on the grounds of
such subtleties, we choose the LSDA. At least its limitations are well-explored and documented.

The motivation for using all-electron calculations is simpler. Implicitly the rationale for
pseudopotentials is that chemistry and materials physics takes place in the valence shells. True
enough, but core-valence orthogonality is more thar just a theorist’s technical issue. Because of
it, phenomena in the valence mani-old can be probed by measuring response in the core. Surface
core-level shifts are one example. Proton stopping power is another.

Gaussian orbital methodology has two motivations. The technical ground for the choice
is the rich array of numerically potent techniques for evaluating the required matrix elements.
The conceptual ground is, first, the facilitation of direct connection and intercomparison with
molecular calculations, for which gaussian orbitals are de rigueur. At a deeper level, the
conceptual grourd might be callzd the Slater doctrine: the electron densities of molecules,
polymers, film:, and crystals are much closei to being those of perturbed atoms than of pe.turbed
free particles, hence localized functions which one can integrate (gaussians) are preferable a pricri
to diffuse functions one can tntegrate (plane waves). We have checked our codes against whatever
other full-potential, all-electron UTF calculations were available. A set of 1-L calculations we
have found particularly useful is by Wimmer.!°

3. Systems and Findings

Size effects in Li and Al UTF’s

Relaxed (i.e. geometry optimized) Li UTF’s with I < N < 5 were treated in Rei. 11.
The surface energies F, in that pagr are incorrect; see Ref. 12. No prior or subsequem
calculations e (except for our own and the |-L study in Ref. 10) are available for comparison
to our knowledge. Unrelaxed Al UTF's for | < N < 7 were treated in Ref. 13; prior works
for comparison are the aforementioned Refs. 3 and 4.

Table II summarizes the most interesting structural parameters, the work function, and the
Density of States (DOS), N(¢), at the Fermi level for the Li UTF sequence. The system
geometry is hcp (0001); the experimental data correspond to the 9K close-packed structure. The
UTF surface energies are from Ref. 12, not 11. The crystalline data shown are from an FLAPW
calculation'? (which used the same LDA) except for K., which is as calculated in Ref. 12, and



E,, which is an experimental value cited there. Comparison with calculated crystalline energetics
and structural parameters, not experimental ones, is essential to discern treuds because of the

need to avoid or reduce as much as possible the effect of systematic errors in LSDA relative
to experiment.

N -E. E, p N ( El) A, dint dezt
1.10 0.255 3.56 0.49 5.73 —_ —_

2 1.39 0.220 3.63 0.55 5.76 — 4.27

3 1.48 0.195 3.60 0.58 5.75 — 4.39

4 1.51 0.200 3.6l 0.46 5./R9 4.38 4.32

5 1.53 0.200 3.56 0.47 5.67 4.37 141
Crystal L6l 0.2, — — 5.65 4.64 4.64

Table I Cohesive energy, surf_ce energy (both in eV/atom), work function (eV), density of slates at the Fermi
level (statev/eV-atom), equilibrium intraplanar latice parameter, equilibrium interior interplanar
lattic= parameter, and equilibrium exterior one (all in au), all for Li UTF's. See text for sources.

From the tabulated results it is clear that if there is a work function SQSE in Li UTF’s it is
extremely small. It is doubtful that the calculations are precise enough to claim such 2 result.
In marked contrast, there is a ~trong SQSE in N(Ef). That variation is suppressed severely if
the system is kept at ideal crystailine lattice parameters.

Even more striking is 4 gualitative SQSE in N(e) which cannot be seen from the Table,
namely one nearly square-wave step upward per layer below Ef. (For the sake of space, the
DOS plots are not reproduced here; see Ref. 11). That behavior follows directly from the
square-wave DOS associated with parabolic bands in systems with 2-D trans!ational symmetry.
For the Li UTF's the occupied (wholly or partly) bands are very nearly parabolic, herice each
increase in N by unity adds one nearly square step :0 the DOS below Er. This qualitative
behavior, a one-to-one correspondence between a set of DOS [{eatures and N shouid be a directly
testable prediction.

The Li UTF structural parameters also exhibit layer-number dependence. In particular, by
N =5, the interplanar lattice parameter, a,. has settled to a value very close to that for crystalline
hcp Li. The interplanar parameters din. deze (respectively the value of the hcp /2 between
planes not adjacent to the surface and the value separating the two planes at and next to the
surface) are very different from crystalline values, with a small but clearly discernible even-
odd oscillation in d,. Neither interplanar spacing is anywhere near the crystalline c/2 even at
N = 5. The oscillatory behavior makes estimation of the number of layers needed to reach bulk-
like behavior quite difficult. On energetic grounds, we estimated between 17 and 33, depending
on the criterion used. The essential point is independent of the precise numerical value: UTF's
are distinct from thick slabs excised from crystals.



Table III gives the energetic parameters for the Al fec (1i1) UTF's; for brevity we restrict
the tabulation to 1 < N < G, the systems for which our calculations!3 using a dense (37 point)
BZ mesh were done. (Ref. 13 also has results through N = 7 on a 19 point mesh; the overall
trends are not different.) Note should be taken that Ref. 3(b) used the Wigner LSDA, Ref. 4
used the Perdew-Zunger form, while we used Hedin-Lunlqvist. The differences between the
sequences of work. functions are caused primarily by the different LSDA’s. Note also that Ref.
4 used a repeated slab approximation, while Ref. 3(b) used only a 10—point BZ scan.

N —-E. E, E,@ E,(b’ P ‘p(a) (p(b)
] 3.078 0.506 0.40 0.47 4.873 474 4.3
2 3.605 0.486 0.18 _ 4.636 4.53 —
3 3.787 0.454 0.39 0.50 4.372 4.10 32
4 3831 0.519 0.48 —_ 4.323 443 —
5 3.880 0.526 — 0.49 4.553 4.34 34
6 3915 0.526 0.52 — 4.482 431 —

Table 111 Cohesive energy, surface energy (both in eV/atom), and work function
(eV) for Al UTF's. Unsuperscripled quantities ours; (a) Ref. 3(b): (b) Ref. (4).

What one sees is a marked size effect in F,(/N), which declines through N = 3, then jumps
up for the 4-L, the first in the sequence with a genuine interior volume. The work function
behaves similarly but has the jump between N = 4 and 5, namely at the occurrence of the first
system ‘vith a genuine interior plane. Ref. 3(b) puts the jump in ¢ between N = 3 and 4; the
relative coarseness in their BZ scan density could easily be the source of this discrepancy.

Photoelectron spectra for rather thick (from our perspective) Al films, about 500 layers, have
been published recently.!® The main features (Ref. 15, Fig. 2) are maxima at abcut 3 eV and
7 eV below Ef. Ref. 13 did not include the calculaied DOS but the data are available. For
the 7-L UTF. the DOS has maxima at 5.9 and 8.9 eV below Fr. There is a rounder, lower
maximum right at Er. The calculated bulk DOS'® has similar features at about 0.5 ¢V and
—-2.5 eV. In view of the different thicknesses, different methods, and known liniiiations on the
interpretation of bare Kohn-Shkam eigenvalues, the agreement among experiment and the two
calculational limits seems reasonable.

The N—dependence of the cohesive energies is discussed in the next sub-section. We conclude
this sub-section by summarizing. Even though an alkali metal is supposedly most nearly free-
electron-like, the Li UTF's do not exhibit the work function oscillations predicted from a jellium
slab model. By contrast, the Al (111) UTF work function sequence is confirmed to have a strong
quantum size effect, of the same order of miagnitudc as predicted by the jellium model. The
striking size effect in the Li UTF's 1s the step functicn DOS which is correlated or.e-to-one with
the number of layers and the related strong layer-nuinber dependence in N(Fp).



Stopping, Surface Energies, and 1/N Dependences

A key quantity for understanding the fundainentals of ion implantation, radiation hardness,
and similar phenomena in UTF’s is the proton stopping power. The linear energy loss, —'—(',?,
of a swift ion in matter generally is expressed as

IE 2 Zae!
1dE — 5(5) = :1772,72(

n dr m

L(7) (N

where S. L are the stopping cross section and stopping number per scatterer, respectively, 7 1s
the number density of scatterers, ' the velocity of the incident particle, F its energy, r its path
length, Z) the projectile charge, and 7> the number of electrons per target atom. The effects of
channelling and changes in projectile charge state are neglected.

For a large but finite sample composed of N atomic layers. the stopping cross section can be
expanded in a power series in 1//N about the infinite crystal case,'? yielding (at specified velocity)

HS

—2 2
d(1/NY IN=n @

S(1/N.v) = S(0.v) + Z %—
- !

The correction terms account for surface effects and structural differences between the crystal and
the N-layer. Because the calculated S(1.w) in general differs substantially from the crystalline
value S(0. ») (most notably near the stopping peak, v = ¥m.,), terms in 1/N clearly sum to
a significant correction for small N.

For large N the leading ierms in eq. 2 are S(1/N.») = S(0.n) + _{-S,,,rf('n) with Seyr (1)
the leading surface contribution. For UTF’s the opposite limit, the case of small N, is relevant.
Curiously, when we examined'” our calculated values of S(N.v) they also exhibited a linear
dependence upon 1/N in this very different regime of iayer number. The constant coefficient is
reasonably consistent with the crystalline stopping cross section determined irdependently.

The inputs were previously published stopping cross sections for fully relaxed Li, '@
unrelaxed diamond,'®® and relaxed graphite'®® N-layers. [Calculational methods and prior
references are in Refs. 19. The methodology is a local density approximation to the orbital
mean excitation energies which are the materials-specific parameters in the Oddershede-Sabin
generalization of kinetic theory of stopping, itself a form of Bethe theory.] Fits to

S(1/N.v) = S(0.v) + %SL('H) 3)

yield the parameters found in Tables iV and V. The graphite results are so flat that only N = 1,2
are needed. The other two systems have 1 < N < 4. The projectile velocities were selected
to be above the stopping maximum, in the velocity regime where the underlying theory should
hold. All the fits are within the estimated precision of the calculations, with the small variations
readily attributable to minor computational artifacts (e.g. numerical integration meshes) which
have slightly diffcrent effects for differing numbers of layers. For velocities in the vicinity of the
stopping maximum, the fitted S(0), v) values are uniformly but modestly higher (10-15%) than
either experimental or theoretical determinations of S.;yatai(7). The discrepancy between them
is small if one takes into account the significant qualitative differences between the determination



of Sqrystar(#) and the N-Layer calculations on which the fits were based. For example the Li
results would need error bars of only 6% on each of the two values (crystal, fitted) to bring
them within coincidence.

” (a.u.) diamond graphite
Sp(v) S(0. ) Sz(r) S(0.r)
2.00 5.03 12.00 -0.02 12.75
2.50 2.95 11.57 — —
3.00 1.91 10.31 — —
5.00 0.74 6.00 — —
6.63 0.4 4.26 0.00 4.29

Table 1V Filted slope and intercept for stopping cross section {cross section units are 10 I
¢V cm?/atom) in unrelaxed diamond (N = 1—4) and relaxed graphite UTF's (N = 1.2).

v (a.u.) St(v) S(0.v)
1.25 2.32 13.00
1.50 1.52 11.69
1.75 1.11 10.53
2.50 0.53 7.95
4.00 0.21 5.05
6.00 0.09 3.02

Table V As in preceding table for relaxed Li UTF's (N=1-4).

Rationalization of the linear 1/N dependence at small N on the basis of the Bragg rule

S(N 'n) = %[N S(l"“) + Sinfrrarﬁnn('")]
. 4)
= S(l 7)) + Vsimrmrﬁnn('")

clearly will not work. The !-L rather than the crystal is the Bragg rule asymptote. Said
another way, the Bragg rule is a weak binding approximation yet weak binding is not a common
characteristic for all three systems. Different physics is involved. The connection is with
surface energy calculations.!2 2

Gay et al. pointed out?? that, for a sufficiently thick N-layer, the cohesive energy per slab
unit cell E...u(N), the crystalline cohesive energy E.rysrai. and the surface energy F, are
related by

Er.rrll(‘N) = NEr.rry.qml + 2E, (5)

8



Obviously the N-layer cohesive energy F.(/V) (for a monatomic surface unit cell) follows:
Ye ‘V) = (I/N)Er'.rrﬂ(lv) = Er_rry.-fnl + 2[-:-'/‘\' (6)

Since eq. 6 is for large. finite N, the small N relaxation effects may be written in the same
way as in eq. 2
EAN) =) NTUE (7)
)=t
with
Er_rrynhll = \llnx E.(N) = &, (8)

and F, = £;/2 for sufiiciently large but finite N s before.

If either the relaxation effects leave the N-layer cohesive energies unshifted with respect
to the unrelaxed N-layer values, or the UTF's are treated at crystalline geometries, the linear
approximation to Eq. 7 should fit the calculated valucs. The systems studied happen to fit these
criteria. Details are in Ref. 17, here we summarize.

The relaxed and unrelaxed cohesive energies of the Li 1- thrcugh 5--Layers differ at most by
0.01 eV/atem. (As noted above, the Li N-layer geometries have Lignificant relaxation effects: the
distinction is consistent with the small bulk modulus of Li.) The Li M-layer cohesive energies
fit very nicely to

E-(N) % £ + 61 ©)
with £ = —1.67 eV/atom. & = 0.57 ¢V, values in excellent agreen.ent with the measured
values of E. . ysrar and 2E, respectively.'?

The unpublished cohesive energies for the unrelaxed diamond give
Eo = —8.385 eV/atom, &1 = 6.495 V. Since the system has highly unphysical un-
reconstructed surfaces, £ is also unphysical as a surface energy. However, & exhibits
excessive birding completely consistent with the overbound E.. ., ,.q found by Chelikowsky
and Louie’s bulk diamond calculation?! using the same LDA: F, rystq1 = —8.02 eV /atom The
0.35 eV/atom discrepancy between the two is not surprising. Because the N-layer calculations
were for an unphysical system (no surface reconstruction in a C film), they were unoptimized
with regard to fitting function basis sets. An odd technical characteristic of the LCGTO-FF
method is that an unoptimized charge fitting basis causes spurious extra binding.

Cohesive energies, but not stopping cross sections, also are available for unrelaxed 1-6
layers of Al;, see Table IIl above and Ref. 13. Those energies fit almost perfectly with
Eo = —4.08 eV /atom, & = 1.00eV. The former value is exactly the crystalline cohesive
energy found in our recent LCGTO-FF calculation which used the same LDA,3 while the latter
value is twice the published experin.ental surface energy.'?

The extremely high quality of predicted values of F, = £;/2 suggests a simple extension
of the reasoning of Ref. 12. There it is argued that the incremental energy (the difference in
cohesive energy per film cell)

Eine(N) = E<(N) = BN - 1)

(10)
=NE(N)— (N - 1)E(N - 1)



is the best consistent estimator (in the sense of avoiding inter-calcnlation accumulation ot error)
of the crystalline binding energy obtainable from a series of UTF calculations. Analytically taat
argument amounts to beginning with Eq. 8, then ferming

Fine(N) =N i N_ij - i (N~ )—IEI G

=0 =0

For N > 3 (because at least three points are necessary to determine the coefficients). the ieading
terms are

|
Einc(N) = E0~ o2
N TR (12)

L
=~ ¢ erystal

Thus it appears that calculation of E, by the latter approximation!? could be improved by use
of the fitted £y, especially ior those UTF sequences which have a significant non-linearity of
cohesive energy in 1/V.

To conclude this section, we return to the physics of the linear scaling of the proton stopping
cross section with 1/N. FE. is calculated in the adiabatic approximation, hence reflects the
behavior of the target electron population alone. For all the systems studied, E. varies linearly
with 1/N. Electronic stopping is determined by electron excitation, hence the more bound
the system per atom (for a specified chemical species and symmetry; see Ref. 17) the more
energetically demanding it is to excite the electron population, whence the stopping cross section
for a given series of films exhibits the same scaling behavior with layer number as the cohesive
energy. Thus, S(0.v) is the best (in the sense of physically consistent) estimator of S.,yatq1(1)
obtainable from a series of N-layer calculations. in correspondence with the estimator provided
by &o for the crystalline cohesive energy. Similarly, we may identify Sy(v) as a consistent
estimator of S,,,¢(») from N-layer calculations.

Strain-induced Derivative Discontinuities in Spin Moments

We conclude with a brief discussion of the relationship between strain and spin moment in
the Fe 1-L.22 Much else has been sublished by other workers on Fe UTF’s but here we focus
only on that onc issus. A series of spin-polarized LSDA calculations was perfcimed on an Fe
1-L in hexagonal symmetry over a range of lattice constants 3.4 < a < 5.85 au; from 5.0
au downward every 0.1 au was sampled. The spin moment as a function of a turns out to be
remarkably rich in features: two discontinuities in slope (at 4.7 and 4.2 au) followed by collapse
from a high-spin to low-spin state between the points at 3.7 and 3.6 au.

As discussed in Ref. 22 and Harrison’s very insightful tight-binding analysis,2* all these
features are connected with the conversion of fully occupied bands (in the ferromagnetic regime)
to partial occupancy and with the band-edge discontinuity in the DOS for systems with two-
dimensional periodicity which we have already discussed for the Li UTF's. The band edge DOS
in a crystal does not have that discontinuity, hence would yield a discontinuity only in 02/./8a2,
not in the first derivative of the moment. In concept we have come full circle to Schulte's
argument!! At low lattice constant the system is paramagnetic, with four bands crossing EF,
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while at 2 = 5.85 au only one majority-spin band crosses Er and the system is ferromagnetic.
As the system is expanded, therefore, a majority spin band narrows and falls with respect to E'r
until it is entirely below, then the Frocess repeats for the next two higher bands. In order (with
respect to increasing a), the K. l"ﬁ_). and finally the M> band edges cross Fr. With respect to
increasing a, the first crossing is the jump to .1e high-spin state, while the latter two correspond

to flattening of the curve toward cventual saturation.

If they were to be found experimentally. these discontinuities in J;/Ja would be quite
significant for understanding DFT and approximations thereto. The reason is that the physical
quantity involved, the spin moment, is rigorously interpretable (from the electron spin densi'y)
in DFT. Similarly, the highest occupied Kohn-Sham eigenvaluve is the only one with an exac:
interpretation: it is E'r for the case of exact K-S theory. Hence the quality of an approximation
to DFT would be tested extremely stringently by the way ir. which the calculated spin moment
behaved relative to the calculated F'r as a function of strain in comparison with experiment.

4. Acknowledgments

This paper is dedicated to the memorv of Jean-Lcuis Calais, who died wholly unexpectedly
on May 30, 1995. His immense intellect, remarkable erudition, and boundless cheerfulness were
mainstays of the life of both the Quantum Chemistry Group (Uppsala University), where he was
a faculty member, and the Quantum Theory Project (University of Florida), where he was an
adjunct member, since the early days of both groups. Both of us benefitted from his friendship,
professionally and personally.

We thank Peter Apell, Uwe Birkenheuer. Eduardo Mola, Notker Rosch, and Jack Sabin
for fruitful collaborations and many helpful comments. SBT thanks Alex Khein for providing
unpublished cohesive energies shown in Table I. SBT’s research was supported in part by the
U.S. Army Research Office, as was his travel to CMT-19. JCB'’s research was supported in
part by the U.S. Dept. of Energy.

5. References

1. F.K. Schulte, Surf. Sci. 55, 427 (1976)

2. (a) E.E. Mola and J.L. Vicente, J. Chem. Phys. 84, 2876 (1986); (b) J.L. Vicente, A. Paola,
A. Razzitte, E.E. Mola, and S.B. Trickey, Phys. Stat. Sol. (b) 155, K93 (1989)

3. (a) P. Feibelman, Phys. Rev. B 27, 1992 (1983); (b) P. Feibelman and D.R. Hamann, Phys.
Rev. B 29, 6463 (1984)

4. L.P. Batra, S. Ciraci, G.P. Srivastava, J.S. Nelson, and N.Y. Feng, Phys. Rev. B 34, 8246
(1986)

5. The algorithms in the code FILMS are discussed in (a) J.C. Boettger, Internat. J. Quantum
Chem. S 27, 147, (1993), (b) J.C. Boettger and S.B. Trickey, Phys. Rev. B 32, 1356 (1985);
(c) J.W. Mintmire, J.R. Sabin, and S.B. Trickey, Phys. Rev. B 26, 1743 (1982)

6. The algorithms in GTOFF, the successor to FILMS, are discussed in J.C. Boettger, Internat.
J. Quantum Chem. S 29, in press.



11.
12.
13.

14.
15.
16.

17.

18.

19.

20.

21.
22.

23

Reviews and references to the original DFT literature can be found in Energy Density
Functional Theory of Many-Electron Systems, E.S. Kryachko and E.V. Ludena (Kluwer,
Dordrecht, 1990); Density Functional Theory, R.M. Dreizler and E.K.U. Gross (Springer-
Verlag, Berlin, 1990); Density Functional Theory for Many-Fermion Systems, Adv. Quantum
Chem. 21, S.B. Trickey ed. (Academic, San Diego 1990); R.O. Jones and O. Gunnarsson,
Rev. Mod. Phys. 61, 689 (1989); Many-Bodv Phenomena at Surfaces, David !.angreth
and Harry Sul' eds. (Academic, Orlando 1984); Local Density Approximations in Chemistry
and Solid State Physics, J.P. Dahl and J. Avery eds. (Plenum, NY 1984); Theory of the
Inhomogeneous Electron Gas, N.-H. March and S. Lundqvist eds. (Plenum, NY [983)
J.C. Boettger and S.B. Trickey, Phys. Rev. B Rapid Commun. (accepted); All-electron,
gaussian basis, full potential calculation (GTOFF; see ref. 7) of high P phase transitions
in Al
R.G. Greene, H. Luo, and A L. Ruoff, Phys. Rev. Lett. 73, 2075 (1994)

. E. Wimmer, Surf. Sci. 134, L487 (19€3); J. Phys. F: Met. Phys. 13, 2313 (1933); ibid.,

14, 681 (1984); ibid.. 14, 2613 (1984)

J.C. Boettger and S.B. Trickey, Phys. Rev. B 45, 1363 (1992)

J.C. Boettger, Phys. Rev. B 49, 16798 (1994)

J.C. Boettger, U. Birkenheuer, N. Rosch. and S.B. Trickey, Iaternat. J. Quantum Chem. S

28, 675 (1994)

J.A. Nobell, S.B. Trickey, P. Blaha, and K. Schwarz, Phys. Rev. B 45, 5012 (1992)

R. Bota, 1. Benkovsky, D. Faktor, and L’. Benco, Czech. J. Phys. 44, 585 (1994)

Handbook of the Band Structure of Elemental Solids, D.A. Papaconstantopoulos (Plenum,

NY, 1986)

P. Apell, J.R. Sabin, and S.B. Trickey, Internat. J. Quantum Chemn. S 29, in press.

(a) Jin Zhong Wu, S.B. Trickey, and J.R. Sabin, Nucl. Inst. Meth. B 79, 206 (1993); (b)

Jin Zhong Wu, S.B. Trickey, J.R. Sabin, and J.A. Nobel, I ternat. J. Quantum Chem. S

28, 269 (1994)

(a) D.E. Meltzer, J.R. Sabin, S.B. Trickey, and Jin Zhong Wu, Nucl. Inst. Meth. B 82, 493

(1993); (b) S.B. Trickey. Jin Zhong Wu, and J.R. Sabin, Nucl. Inst. Meth. B 93, 186 (1994)

J.G. Gay, J.R. Smith, F.J. Arlinghaus, and R.H. Waggoner, J. Vac. Sci. Tech A 2, 932 (1984)

J.R. Chelikowsky :nd S.G. Louie, Phys. Rev. B 29, 3470 (1984)

J.C. Boettger, Phys. Rev. B 47, 1138 (1993)

. W.A. Harrison, Phys. Rev. B 49. 3584 (1994)



